Startseite FORPHYS

SG041 Gleichmäßig beschleunigte Bewegung

© H. Hübel Würzburg 2013

Geschwindigkeit

Koordinaten

Glossar 

Physik für Schülerinnen und Schüler

Eine gleichmäßig beschleunigte Bewegung ist eine Bewegung mit konstanter Beschleunigung a bzw. unter der Wirkung einer konstanten Kraft F = m·a . Dabei ist sowohl die Richtung als auch der Betrag des Beschleunigungsvektors  und des Kraftvektors konstant.

Es liegt nahe, die positive Koordinatenrichtung entsprechend der Bewegungsrichtung zu wählen, wenn eine eindimensionale (lineare) Bewegung vorliegt. Wird der Ort x (die Ortskoordinate) in Abhängigkeit von der Zeit aufgetragen, erkennt man, dass in gleichgroßen Zeitabschnitten Δt ungleich große Ortsänderungen Δx erfolgen.

beschleunigte Bewegung: Hefteintrag Aus einem Schülerheft:

eindimensionale beschleunigte Bewegung (nicht unbedingt gleichmäßig beschleunigt); der Vektorcharakter des Ortsvektors ist durch das Vorzeichen der Ortskoordinate x erfasst; der Anfangsort x0 ist hier jeweils 0, also der Koordinatenursprung.

Die Registrierung eines t-v-Diagramms für eine gleichmäßig beschleunigte Bewegung zeigt eine lineare Funktion für das t-v-Diagramm. Das führt zur Definition der Beschleunigung a

   a = Δv/Δt  

Da allgemein (für evtl. sehr kleine Zeitabschnitte Δt) gilt

(1) x = x0 +  v0·Δt +  1/2 ·a· Δt2

(2) v =          v0     +         a·Δt

liegt bei der gleichmäßig beschleunigten Bewegung der Spezialfall vor: Beschleunigung a =/= 0 = konstant für beliebig lange Zeitabschnitte Δt.

Wenn der Zeitabschnitt Δt zur Zeit 0 beginnt, kann man auch schreiben:

(1) x = x0 +  v0·t +  1/2 ·a· t2

(2) v =          v0   +        a·t  

x0 ist dabei der Anfangsort, v0 die Anfangsgeschwindigkeit. Das t-x-Diagramm ist eine Parabel. Das t-v-Diagramm zeigt eine Gerade, die eine Ursprungsgerade ist, wenn die Anfangsgeschwindigkeit v0 =  0 ist.

     a ist bei einer linearen Bewegung in jedem Fall die Steigung des t-v-Diagramms.    

Das t-a-Diagramm zeigt eine Konstante. Die Fläche unter der t-a-Diagramm entspricht der Geschwindigkeitsänderung Δv = a·Δt . Diese Überlegung ist eine Grundlage des "Flächenverfahrens".

Steigungs- und  Flächenverfahren Von der Geschwindigkeit v zur Beschleunigung a mittels der Steigung.

Von der Beschleunigung a zur Geschwindigkeit v mittels des Flächenverfahrens bei bekannter Anfangsgeschwindigkeit v0.

Bei einer Bewegung im Raum  gilt:

Wegen F = m·a  sind die Kraft F und die Beschleunigung a immer gleichgerichtet.

Die Bewegungsrichtung (Richtung von v) kann eine ganz andere sein, abhängig von der Anfangsgeschwindigkeit v0.

.

( September 2013 )